Что определяет время


Время (физика) - это... Что такое Время (физика)?

Время (физика)

Сейчас — 9 июня 2009, 02:30 (UTC)

Время — одно из основных понятий физики и философии, одна из координат пространства-времени, вдоль которой протянуты мировые линии физических тел, а также сознание.

В диалектическом материализме время — это объективно реальная форма существования движущейся материи, характеризующая последовательность развёртывания материальных процессов, отделённость друг от друга разных стадий этих процессов, их длительность, их развитие.

В количественном (метрологическом) смысле понятие время имеет два аспекта:

Свойства времени

В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична. Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе.

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой. «Скорость течения времени» становится понятием «субъективным», зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом. Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная. Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

В этом контексте в некоторых гипотезах выделяют такое элементарное «мгновение» — хронон[1], соответствующее понятию планковское время и являющееся согласно этим гипотезам квантом времени, то есть его мельчайшей неделимой частицей, и составляющее примерно 5,3×10-44 с.

Отсчёт времени

Как в классической, так и в релятивистской физике для отсчёта времени используется временна́я координата пространства-времени, причём (традиционно) принято использовать знак «+» для будущего, а знак «-» — для прошлого. Однако смысл временно́й координаты в классическом и релятивистском случае различен (см. Ось времени).

См. также:

  • Единицы измерения времени
  • Собственное время

Зависимость от времени

Поскольку состояния всего нашего мира зависят от времени, то и состояние какой-либо системы тоже может зависеть от времени, как обычно и происходит. Однако в некоторых исключительных случаях зависимость какой-либо величины от времени может оказаться пренебрежимо слабой, так что с высокой точностью можно считать эту характеристику независящей от времени. Если такие величины описывают динамику какой-либо системы, то они называются сохраняющимися величинами, или интегралами движения. Например, в классической механике полная энергия, полный импульс и полный момент импульса изолированной системы являются интегралами движения.

Различные физические явления можно разделить на три группы

  • стационарные — явления, основные характеристики которых не меняются со временем. Фазовый портрет стационарного явления описывается неподвижной точкой.
  • нестационарные — явления, для которых зависимость от времени принципиально важна. Фазовый портрет нестационарного явления описывается движущейся по некоторой траектории точкой. Они, в свою очередь, делятся на
    • периодические — если в явлении наблюдается чёткая периодичность (фазовый портрет — замкнутая кривая)
    • квазипериодические — если они не являются в строгом смысле периодическими, но в малом масштабе выглядят как периодические (фазовый портрет — почти замкнутая кривая)
    • хаотические — апериодические явления (фазовый портрет — незамкнутая кривая, заметающая некоторую площадь более или менее равномерно, аттрактор).
  • квазистационарные — явления, которые, строго говоря, нестационарны, но характерный масштаб их эволюции много больше тех времён, которые интересуют в задаче.

Направленность времени

Большинство современных учёных полагают, что различие между прошлым и будущим является принципиальным. Согласно современному уровню развития науки, информация переносится из прошлого в будущее, но не наоборот. Второе начало термодинамики указывает также на накопление в будущем энтропии.

Впрочем, некоторые ученые думают немного иначе. Стивен Хокинг в своей книге «Краткая история времени: от Большого взрыва до чёрных дыр» оспаривает утверждение, что для физических законов существует различие между направлением «вперёд» и «назад» во времени. Хокинг обосновывает это тем, что передача информации возможна только в том же направлении во времени, в котором возрастает общая энтропия Вселенной. Таким образом, Второй закон термодинамики является тривиальным, так как энтропия растет со временем, потому что мы измеряем время в том направлении, в котором растет энтропия[2].

Единственность прошлого считается весьма правдоподобной. Мнения учёных касательно наличия или отсутствия различных «альтернативных» будущих различны[3].

Единицы измерения времени

Хронологически обособленные временные отрезки

В геологии

  • Эон
  • Эра
  • Эпоха
  • Период
  • Век (геологический) — не путать со столетием
  • Фаза

В истории

Метрология

Средства отсчёта текущего времени (автономные)

  • Календарь (печатное издание) — только дискретный счёт
  • Часы
  • Стандарт частоты

Централизованные способы определения текущего времени

  • По телефону с помощью службы точного времени
  • По телевизору или бытовому радиоприёмнику, используя аудио- или визуальные сигналы точного времени, передаваемые вещательными службами
  • По приёмнику сигналов точного времени, используя особые сигналы, передаваемые специальными радиостанциями
  • По компьютеру с помощью специальных сетевых сервисов в Интернете и локальных сетях (например, таких как

dic.academic.ru

Что такое время?

Что такое время?

Несмотря на то, что явление времени кажется интуитивно понятным и является фундаментальным понятием в философии и науке, точное определение времени до сих пор не сформировано. В данной статье мы рассмотрим несколько основных концепций времени с точки зрения науки.

Классическая физика

Классическая физика сложилась до возникновения теории относительности Эйнштейна и квантовой теории. Согласно классической концепции времени, время – непрерывная величина, которая не определяется чем-либо и является априорной характеристикой мира. Время – основное условие протекания каких-либо процессов в мире. Такое время одинаково течет для всех процессов и во всех точках мира, при этом нет ничего, что способно повлиять на ход времени. Несмотря на то, что тела и процессы могут ускоряться и замедляться, течение времени равномерно. В связи с этим с точки зрения классической физики время называют абсолютным. Эти свойства времени описал Исаак Ньютон в своем труде «Математические начала натуральной философии» 1687-го года.

«Математические начала натуральной философии» Исаака Ньютона

В классической механике переход от одной системы отсчета (инерциальной) к другой описывается так называемыми преобразованиями Галилея. Уравнения механики Ньютона по отношению к данным преобразованиям являются инвариантными, из чего выплывает абсолютность времени.

Следует отметить, что в классической физике для времени не выделяется определенная ось, так как в рамках данной концепции течение времени в обратную сторону равносильно обычному его течению.

Термодинамика

В отличие от классической физики, термодинамика утверждает, что время необратимо в силу второго закона термодинамики. Согласно этому закону существует некоторая функция состояния – энтропия, которая не убывает в любых процессах в замкнутых системах. Если бы время могло идти в обратном направлении, энтропия бы в таких системах уменьшалась, что противоречит вышеизложенному закону.

Термодинамика отличается жестким требованием существования оси времени.

Квантовая механика

В большинстве своем концепция времени в рамках квантовой механики схожа с интерпретацией классической физики, то есть время течет равномерно. Однако, основным отличием данного определения является необратимость времени. Это связано с тем, что процесс измерения несимметричен во времени. Измерение в данный момент даст информацию о состоянии объекта в прошлом, но в будущем даст новое состояние.

Релятивистская физика (теория относительности Эйнштейна)

Наиболее популярной концепцией времени сегодня является определение времени в рамках теории относительности Эйнштейна.

Альберт Эйнштейн на пляже (1939 г.), вероятно думает о физике

Прежде всего следует отметить основные постулаты данной концепции:

  • Скорость света в вакууме одинакова во всех системах координат, которые движутся относительно друг друга равномерно и прямолинейно.
  • Физические законы одинаковы во всех системах координат, которые движутся относительно друг друга равномерно и прямолинейно.
  • Любое событие может влиять лишь на события, которые происходят позже него и не влияет на события, которые происходят раньше него.

Исходя из вышеупомянутых постулатов, можно утверждать, что события, которые происходят одновременно в одной системе отсчета, могут быть не одновременны в другой системе отсчета, движущейся относительно первой системы отсчета. Таким образом, в рамках данной концепции ход времени зависит от движения выбранной системы отсчета. Проще говоря, скорость хода часов зависит от того, кто их носит. Интереснейшим аспектом данной теории является влияние гравитации на течение времени. В рамках данной концепции пространство и время являются несамостоятельными частями одного пространственно-временного континуума. Тогда вблизи массивных объектов искажается не только пространство, но и изменяется скорость течения времени.

Искривление пространства-времени как результат гравитационного возмущения

В релятивистской физике время определяется как четвертая координатная ось системы координат, три другие оси которой представляют три пространственные координаты «нашего трехмерного мира». Таким образом каждое тело имеет так называемую мировую линию. Если рассматривать данное тело в упомянутой четырехмерной системе координат, то оно будет представляться протяженным множеством этих тел. То есть в каждый момент времени своего существования тело будет наноситься на четырехмерную систему координат, в зависимости от его пространственного, а также временного положения.

Мировая линия человека (упрощенно), где X и Y — две пространственные координаты, а T — временная координата.

Что же такое время?

Исходя из сказанного выше, становится ясно, что человечеству совершенно неясно, что такое время. Перечисленные здесь теории лишь пытаются математически (и геометрически) определить время, как нечто, что может использоваться в дальнейших расчетах для объяснения наблюдаемых явлений.

Опираясь на постулаты, выплывающие из основных концепций времени, можно попытаться сформулировать следующее субъективное определение:

«Время – априорный геометрический параметр, который характеризирует движение, определяет длительность существования всех процессов, есть условие существования изменения. Является неотъемлемой частью пространственно-временного континуума, есть его четвертая координата наряду с тремя пространственными. Время способно искривляться в результате гравитационного возмущения, при этом является необратимым. Данное явление относительное и зависит от выбора системы отсчета и ее скорости. Подчиняется постулату причинности, согласно которому любое событие может влиять лишь на события, которые происходят позже него и не влияет на события, которые происходят раньше него».

Картина Сальвадора Дали «Постоянство памяти» 1931 г.

Данное явление невозможно представить в уме, а потому ученые со всего мира пытаются объяснить его математически, что пока остается непосильной задачей и вызывает множество разногласий в научном сообществе. Если же ученому задать вопрос «Что такое время?», то скорее всего в ответ Вы услышите – «Это то, что измеряется часами».

comments powered by HyperComments

spacegid.com

Временем - это... Что такое Временем?

Временем

Сейчас — 9 июня 2009, 02:30 (UTC)

Время — одно из основных понятий физики и философии, одна из координат пространства-времени, вдоль которой протянуты мировые линии физических тел, а также сознание.

В диалектическом материализме время — это объективно реальная форма существования движущейся материи, характеризующая последовательность развёртывания материальных процессов, отделённость друг от друга разных стадий этих процессов, их длительность, их развитие.

В количественном (метрологическом) смысле понятие время имеет два аспекта:

Свойства времени

В классической физике, время — непрерывная величина, априорная характеристика мира, ничем не определяемая. В качестве основы измерения просто берётся некая последовательность событий, про которую считается несомненно верным, что она происходит через равные промежутки времени, то есть периодична. Именно на этом принципе и основаны часы. Такая же роль времени и в квантовой механике: несмотря на квантование почти всех величин, время осталось внешним, неквантованным параметром. В обоих случаях «скорость течения времени» не может ни от чего зависеть, а потому тавтологически равна константе.

В релятивистской физике ситуация кардинально меняется. Время рассматривается как часть единого пространства-времени, и, значит, может меняться при его преобразованиях. Можно сказать, что время становится четвёртой координатой, правда, в отличие от пространственных координат, она обладает противоположной сигнатурой. «Скорость течения времени» становится понятием «субъективным», зависящим от системы отсчёта. Ситуация усложняется в общей теории относительности, где «скорость течения времени» зависит также и от близости к гравитирующим телам.

Физическая интерпретация вышеназванных теорий требует нового определения времени, как числа процессов в системе отсчёта, произошедших одновременно с данным процессом. Система отсчёта времени может быть неравномерная (как процесс вращения Земли вокруг Солнца) или равномерная. Эталон секунды — период излучения, соответствующий переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

В этом контексте в некоторых гипотезах выделяют такое элементарное «мгновение» — хронон[1], соответствующее понятию планковское время и являющееся согласно этим гипотезам квантом времени, то есть его мельчайшей неделимой частицей, и составляющее примерно 5,3×10-44 с.

Отсчёт времени

Как в классической, так и в релятивистской физике для отсчёта времени используется временна́я координата пространства-времени, причём (традиционно) принято использовать знак «+» для будущего, а знак «-» — для прошлого. Однако смысл временно́й координаты в классическом и релятивистском случае различен (см. Ось времени).

См. также:

  • Единицы измерения времени
  • Собственное время

Зависимость от времени

Поскольку состояния всего нашего мира зависят от времени, то и состояние какой-либо системы тоже может зависеть от времени, как обычно и происходит. Однако в некоторых исключительных случаях зависимость какой-либо величины от времени может оказаться пренебрежимо слабой, так что с высокой точностью можно считать эту характеристику независящей от времени. Если такие величины описывают динамику какой-либо системы, то они называются сохраняющимися величинами, или интегралами движения. Например, в классической механике полная энергия, полный импульс и полный момент импульса изолированной системы являются интегралами движения.

Различные физические явления можно разделить на три группы

  • стационарные — явления, основные характеристики которых не меняются со временем. Фазовый портрет стационарного явления описывается неподвижной точкой.
  • нестационарные — явления, для которых зависимость от времени принципиально важна. Фазовый портрет нестационарного явления описывается движущейся по некоторой траектории точкой. Они, в свою очередь, делятся на
    • периодические — если в явлении наблюдается чёткая периодичность (фазовый портрет — замкнутая кривая)
    • квазипериодические — если они не являются в строгом смысле периодическими, но в малом масштабе выглядят как периодические (фазовый портрет — почти замкнутая кривая)
    • хаотические — апериодические явления (фазовый портрет — незамкнутая кривая, заметающая некоторую площадь более или менее равномерно, аттрактор).
  • квазистационарные — явления, которые, строго говоря, нестационарны, но характерный масштаб их эволюции много больше тех времён, которые интересуют в задаче.

Направленность времени

Большинство современных учёных полагают, что различие между прошлым и будущим является принципиальным. Согласно современному уровню развития науки, информация переносится из прошлого в будущее, но не наоборот. Второе начало термодинамики указывает также на накопление в будущем энтропии.

Впрочем, некоторые ученые думают немного иначе. Стивен Хокинг в своей книге «Краткая история времени: от Большого взрыва до чёрных дыр» оспаривает утверждение, что для физических законов существует различие между направлением «вперёд» и «назад» во времени. Хокинг обосновывает это тем, что передача информации возможна только в том же направлении во времени, в котором возрастает общая энтропия Вселенной. Таким образом, Второй закон термодинамики является тривиальным, так как энтропия растет со временем, потому что мы измеряем время в том направлении, в котором растет энтропия[2].

Единственность прошлого считается весьма правдоподобной. Мнения учёных касательно наличия или отсутствия различных «альтернативных» будущих различны[3].

Единицы измерения времени

Хронологически обособленные временные отрезки

В геологии

  • Эон
  • Эра
  • Эпоха
  • Период
  • Век (геологический) — не путать со столетием
  • Фаза

В истории

Метрология

Средства отсчёта текущего времени (автономные)

  • Календарь (печатное издание) — только дискретный счёт
  • Часы
  • Стандарт частоты

Централизованные способы определения текущего времени

  • По телефону с помощью службы точного времени
  • По телевизору или бытовому радиоприёмнику, используя аудио- или визуальные сигналы точного времени, передаваемые вещательными службами
  • По приёмнику сигналов точного времени, используя особые сигналы, передаваемые специальными радиостанциями
  • По компьютеру с помощью специальных сетевых сервисов в Интернете и локальных сетях (например, таких как

dic.academic.ru

время - это... Что такое время?

понятие, позволяющее установить, когда произошло то или иное событие по отношению к другим событиям, т.е. определить, на сколько секунд, минут, часов, дней, месяцев, лет или столетий одно из них случилось раньше или позже другого. Измерение времени подразумевает введение временнóй шкалы, пользуясь которой можно было бы соотносить эти события. Точное определение времени базируется на дефинициях, принятых в астрономии и отличающихся высокой точностью. Сейчас используются три основные системы измерения времени. В основе каждой из них конкретный периодический процесс: вращение Земли вокруг своей оси – всемирное время UT; обращение Земли вокруг Солнца – эфемеридное время ЕТ; и излучение (или поглощение) электромагнитных волн атомами или молекулами некоторых веществ при определенных условиях – атомное время АТ, определяемое с помощью высокоточных атомных часов. Всемирное время, обычно обозначаемое как «гринвичское среднее время», представляет собой среднее солнечное время на нулевом меридиане (с долготой 0°), который проходит через город Гринвич, входящий в конурбацию Большого Лондона. На основе всемирного времени определяется поясное время, используемое для счета гражданского времени. Эфемеридное время – временнáя шкала, используемая в небесной механике при исследовании движения небесных тел, где требуется высокая точность расчетов. Атомное время – физическая временнáя шкала, применяемая в тех случаях, когда требуется чрезвычайно точное измерение «временнЫх интервалов» для явлений, связанных с физическими процессами.

Поясное время. В повседневной практике на местах используется поясное время, которое отличается от всемирного на целое число часов. Всемирное время используется для счета времени при решении гражданских и военных задач, в астронавигации, для точного определения долготы в геодезии, а также при определении положения искусственных спутников Земли относительно звезд. Поскольку скорость вращения Земли вокруг своей оси не является абсолютно постоянной величиной, всемирное время не является строго равномерным по сравнению с эфемеридным или атомным временем.

Системы счета времени. Единицей используемого в повседневной практике «среднего солнечного времени» являются «средние солнечные сутки», которые, в свою очередь, делятся следующим образом: 1 средние солнечные сутки = 24 средним солнечным часам, 1 средний солнечный час = 60 средним солнечным минутам, 1 средняя солнечная минута = 60 средним солнечным секундам. Одни средние солнечные сутки содержат 86 400 средних солнечных секунд. Принято, что сутки начинаются в полночь и продолжаются 24 часа. В США для гражданских нужд принято сутки делить на две равные части – до полудня и после полудня, и соответственно в этих рамках вести 12-часовой счет времени. В вооруженных силах США, а также в большинстве стран континентальной Европы время указывается четырехзначными цифрами по 24-часовому циферблату. В этой системе полночь (начало суток) обозначается как 0000, следующий затем полдень – 1200, 3 ч пополудни – 1500, а следующая полночь (окончание суток) – 2400, 1 ч 25 мин после полуночи – 0125 и т.п.

Время и долгота местности. Местное время любой точки на Земле зависит от ее долготы. При движении на запад от начального меридиана местное время отстает от всемирного на 1 ч каждые 15° долготы. Кратность, равная 15°, объясняется просто: Солнце «обходит» Землю, описывая полный круг (360°), за 24 ч, т.е. угловая скорость его движения по небосклону составляет 15° в час. Таким образом, если на Гринвичском меридиане (долгота 0°) 6 ч вечера, то на 75° з.д. местное время будет 1 ч дня, на 120° з.д. – 10 ч утра, а на 45° в.д. – 9 ч вечера. Значение долготы для пункта, расположенного к западу от Гринвича, можно вычислить, если вычесть значение местного солнечного времени, определенное астрономическими наблюдениями, из значения всемирного времени, полученного по радиосигналам точного времени.

Часовые пояса. Чтобы не вводить местное время для каждого градуса (или каждой минуты) широты, поверхность Земли была условно поделена на 24 часовых пояса. При переходе из одного часового пояса в другой значения минут и секунд (времени) сохраняются, изменяется лишь значение часов. Существуют некоторые районы, в которых местное время отличается от всемирного не только на целое количество часов, но еще дополнительно на 30, 40 или 45 мин. Правда, такие временные зоны не являются стандартными часовыми поясами. На Северном и Южном полюсах меридианы сходятся в одной точке, и поэтому там понятие часовых поясов теряет смысл. По сложившейся традиции считается, что время на полюсах соответствует всемирному. Теоретически все часовые пояса земного шара должны ограничиваться прямыми линиями, проходящими на 7,5° восточнее и западнее среднего меридиана каждого пояса, однако в реальности для сохранения единого времени внутри одной и той же административной или природной единицы их границы часто смещены относительно общепринятой.

Летнее время было введено в период Первой мировой войны с целью экономии электроэнергии. С введением летнего времени часы переводятся на час вперед, таким образом, на конец рабочего дня приходится больше светлого времени. Во время Второй мировой войны в США часы оставались переведенными на час вперед как летом, так и зимой. В Англии использовалось «удвоенное летнее время» – часы устанавливались на два часа вперед летом и на час зимой.

Линия перемены даты. При пересечении границы часового пояса мы переводим часы на 1 ч. На Земле также существует условная граница, при пересечении которой календарная дата меняется на одни сутки. Эта граница называется Линией перемены даты и проходит в Тихом океане по 180-му меридиану. Чтобы понять, зачем нужна такая линия, рассмотрим следующий пример. Пусть на Гринвичском меридиане в данный момент будет 0300, 10 июня. Тогда на 165° в.д. по местному времени будет на 11 ч позже (165° = 11×15°), т.е. 1400, 10 июня. На 165° з.д. местное время будет отставать на 11 ч по сравнению с гринвичским, и, следовательно, там будет еще только 1600 предыдущего дня, т.е. 9 июня. На 180-м меридиане будет 1500 – 10 июня или 9 июня в зависимости от того, как рассматривать этот меридиан – западной или восточной долготы. Чтобы выйти из такого затруднения, для часового пояса со средним меридианом 180° было принято: в той части, которая находится к востоку от Линии перемены даты, календарная дата будет на сутки меньше, чем в той которая расположена к западу от этой линии. В некоторых районах, чтобы избежать изменения даты в пределах одной и той же группы островов, Линия перемены даты проводится не строго по 180-му меридиану. Если человек пересекает эту линию, следуя на запад, например, из Сан-Франциско в Токио, календарная дата изменяется на более позднюю (на сутки позже), и таким образом путешественник как бы теряет день. При пересечении этой линии с запада на восток дата изменяется на более раннюю, и он еще раз проживает предыдущие календарные сутки. На кораблях практикуется изменение календарной даты в полночь, что аналогично пересечению именно в это время Линии перемены даты.

Поправки к всемирному времени. Сигналы точного времени по радио передаются в системе координированного времени (UTC), аналогичного среднему гринвичскому времени. Однако в системе UTC ход времени не вполне равномерен, там возникают отклонения с периодом ок. 1 года. В соответствии с международным соглашением в передаваемые сигналы вводится поправка, учитывающая эти отклонения.

На станциях службы времени определяется местное звездное время, по которому вычисляется местное среднее солнечное время. Последнее преобразуется в единое всемирное время (UT0) путем прибавления соответствующего значения, принятого для долготы, на которой расположена станция (к западу от Гринвичского меридиана). Таким образом устанавливается координированное всемирное время. С 1892 известно, что ось земного эллипсоида испытывает колебания по отношению к оси вращения Земли с периодом примерно 14 мес. Расстояние между этими осями, измеренное на любом полюсе, составляет ок. 9 м. Следовательно, долгота и широта любой точки на Земле испытывают периодические вариации. Для получения более однородной шкалы времени в вычисленную для конкретной станции величину UT0 вводится поправка за изменение долготы, которая может достигать 30 мс (в зависимости от положения станции); таким образом получается время UT1. Скорость вращения Земли подвержена сезонным изменениям, вследствие которых время, измеряемое вращением планеты, оказывается то «впереди», то «позади» звездного (эфемеридного) времени, причем отклонения в течение года могут достигать 30 мс. UT1, в которое внесена поправка, учитывающая сезонные изменения, обозначается UT2 (предварительное равномерное, или квазиравномерное, всемирное время). Время UT2 определяется на основе средней скорости вращения Земли, но на нем сказываются долгопериодные изменения этой скорости. Поправки, позволяющие рассчитать время UT1 и UT2 по UT0, вводятся в унифицированной форме Международным бюро времени, находящимся в Париже.

АСТРОНОМИЧЕСКОЕ ВРЕМЯ

Звездное время и солнечное время. Для определения среднего солнечного времени астрономы используют наблюдения не самого солнечного диска, а звезд. По звездам же определяется т.н. звездное, или сидерическое (от лат. siderius – звезда или созвездие), время. С помощью математических формул по звездному времени рассчитывается среднее солнечное время. Если воображаемую линию земной оси продлить в обе стороны, она пересечется с небесной сферой в точках т.н. полюсов мира – Северного и Южного (рис. 1). На угловом расстоянии 90° от этих точек проходит большой круг, называемый небесным экватором, который является продолжением плоскости земного экватора. Видимый путь движения Солнца называется эклиптикой. Плоскости экватора и эклиптики пересекаются под углом ок. 23,5°; точки пересечения носят название точек равноденствия. Ежегодно, примерно 20–21 марта, Солнце пересекает экватор при движении с юга на север в точке весеннего равноденствия. Эта точка почти неподвижна по отношению к звездам и используется в качестве репера для определения положения звезд в системе астрономических координат, а также звездного времени. Последнее измеряется величиной часового угла, т.е. угла между меридианом, на котором находится объект, и точкой равноденствия (отсчет производится на запад от меридиана). В пересчете на время один час соответствует 15 дуговым градусам. По отношению к наблюдателю, находящемуся на определенном меридиане, точка весеннего равноденствия ежедневно описывает на небосводе замкнутую траекторию. Промежуток времени между двумя последовательными пересечениями этого меридиана называется звездными сутками. С точки зрения наблюдателя, находящегося на Земле, Солнце каждый день перемещается по небесной сфере с востока на запад. Угол между направлением на Солнце и небесным меридианом данной местности (измеряемый в западном направлении от меридиана) определяет «местное видимое солнечное время». Именно такое время показывают солнечные часы. Промежуток времени между двумя последовательными пересечениями Солнцем меридиана называется истинными солнечными сутками. За год (примерно 365 дней) Солнце «совершает» полный оборот по эклиптике (360°), а значит за сутки смещается по отношению к звездам и точке весеннего равноденствия почти на 1°. Вследствие этого истинные солнечные сутки длиннее звездных на 3 мин 56 с среднего солнечного времени. Поскольку видимое движение Солнца по отношению к звездам неравномерно, истинные солнечные сутки также имеют неодинаковую продолжительность. Эта неравномерность движения светила происходит вследствие эксцентриситета земной орбиты и наклона экватора к плоскости эклиптики (рис. 2).

Среднее солнечное время. Появление в 17 в. механических часов привело к необходимости введения среднего солнечного времени. «Среднее (или среднее эклиптическое) солнце» – это фиктивная точка, равномерно движущаяся по небесному экватору со скоростью, равной средней за год скорости движения истинного Солнца по эклиптике. Среднее солнечное время (т.е. время, протекшее от нижней кульминации среднего солнца) в любой момент на данном меридиане численно равно часовому углу среднего солнца (выраженному в часовой мере) минус 12 ч. Разность между истинным и средним солнечным временем, которая может достигать 16 мин, называется уравнением времени (хотя фактически уравнением не является).

Как отмечалось выше, среднее солнечное время устанавливается с помощью наблюдений за звездами, а не за Солнцем. Среднее солнечное время строго определяется угловым положением Земли относительно ее оси, вне зависимости от того, постоянна или переменна скорость ее вращения. Но именно потому, что среднее солнечное время является мерой вращения Земли, оно используется для определения долготы местности, а также во всех других случаях, когда требуются точные данные о положении Земли в пространстве.

Эфемеридное время. Движение небесных тел описывается математически уравнениями небесной механики. Решение этих уравнений позволяет установить координаты тела в виде функции времени. Время, входящее в эти уравнения, по определению, принятому в небесной механике, является равномерным, или эфемеридным. Существуют специальные таблицы эфемеридных (теоретически вычисленных) координат, которые дают расчетное положение небесного тела через определенные (обычно одинаковые) промежутки времени. Эфемеридное время может быть установлено по движению любой планеты или ее спутников в Солнечной системе. Астрономы определяют его по движению Земли по орбите вокруг Солнца. Оно может быть найдено путем наблюдений за положением Солнца по отношению к звездам, но обычно для этого следят за движением Луны вокруг Земли. Видимый путь, который Луна проходит в течение месяца среди звезд, может рассматриваться как своеобразные часы, в которых звезды образуют циферблат, а Луна служит часовой стрелкой. При этом эфемеридные координаты Луны должны быть вычислены с высокой степенью точности, и столь же точно должно быть определено ее наблюдаемое положение.

Положение Луны обычно определялось по времени прохождения через меридиан и покрытию звезд лунным диском. Наиболее современный метод представляет собой фотографирование Луны среди звезд с помощью специальной фотокамеры. В этой камере используется плоскопараллельный светофильтр из темного стекла, которому во время 20-секундной экспозиции придается наклон; вследствие этого изображение Луны смещается, и это искусственное смещение как бы компенсирует действительное движение Луны по отношению к звездам. Таким образом, Луна сохраняет строго фиксированное положение относительно звезд, и все элементы на снимке получаются отчетливыми. Поскольку положение звезд известно, измерения по снимку позволяют точно определить координаты Луны. Эти данные сводятся в виде эфемеридных таблиц Луны и позволяют рассчитать эфемеридное время.

Определение времени с помощью наблюдений за вращением Земли. В результате вращения Земли вокруг оси происходит кажущееся движение звезд с востока на запад. В современных методах определения точного времени используются астрономические наблюдения, заключающиеся в регистрации моментов прохождения звезд через небесный меридиан, положение которого строго определено по отношению к астрономической станции. Для этих целей обычно использовался т.н. «малый пассажный инструмент» – телескоп, смонтированный таким образом, что его горизонтальная ось ориентирована по широте (с востока на запад). Труба телескопа может быть направлена в любую точку небесного меридиана. Для наблюдения прохождения звезды через меридиан в фокальной плоскости телескопа помещается крестообразная тонкая нить. Время прохождения звезды фиксируется с помощью хронографа (устройства, регистрирующего одновременно сигналы точного времени и импульсы, возникающие внутри самого телескопа). Таким образом определяется точное время прохождения каждой звезды через данный меридиан.

Значительно бóльшую точность измерения времени вращения Земли дает использование фотографической зенитной трубы (ФЗТ). ФЗТ представляет собой телескоп с фокусным расстоянием 4,6 м и входным отверстием диаметром 20 см, обращенным прямо в зенит. Небольшая фотографическая пластинка размещается под линзой на расстоянии ок. 1,3 см. Еще ниже, на расстоянии, равном половине фокусного, расположена ванна с ртутью (ртутный горизонт); ртуть отражает свет звезд, фокусирующийся на фотопластинке. И линза, и фотопластинка могут поворачиваться как единый блок на 180° вокруг вертикальной оси. При фотографировании звезды делается четыре 20-секундных экспозиции при различных положениях линзы. Пластинка перемещается с помощью механического привода таким образом, чтобы компенсировать видимое суточное движение звезды, удерживая ее в поле зрения. При движении каретки с фотокассетой автоматически регистрируются моменты прохождения ее через определенную точку (например, путем замыкания контакта часов). Отснятая фотопластинка проявляется, и полученное на ней изображение измеряется. Данные измерений сопоставляются с показаниями хронографа, что дает возможность установить точное время прохождения звезды через небесный меридиан. В другом инструменте для определения звездного времени – призменной астролябии (не следует путать этот прибор со средневековым угломерным инструментом того же названия), 60-градусная (равносторонняя) призма и ртутный горизонт помещаются перед линзой телескопа. В призменной астролябии получаются два изображения наблюдаемой звезды, которые совпадают в момент, когда звезда находится на высоте 60° над горизонтом. При этом автоматически регистрируется показание часов. Во всех этих инструментах используется один и тот же принцип – для звезды, координаты которой известны, определяется время (звездное или среднее) прохождения через определенную линию, например небесный меридиан. При наблюдениях специальными часами фиксируется время прохождения. Разность между вычисленным временем и показаниями часов дает поправку. Величина поправки показывает, сколько минут или секунд нужно прибавить к показаниям часов, чтобы получить точное время. Например, если расчетное время 3 ч 15 мин 26,785 с, а на часах 3 ч 15 мин 26,773 с, то часы отстают на 0,012 с и поправка составляет 0,012 с. Обычно за ночь проводится наблюдение за 10–20 звездами, и по ним вычисляется средняя поправка. Последовательная серия поправок позволяет определить точность хода часов. При помощи таких инструментов, как ФЗТ и астролябия, за одну ночь устанавливается время с точностью ок. 0,006 с. Все эти инструменты предназначены для определения звездного времени, по которому устанавливается среднее солнечное время, а последнее переводится в поясное время.

ЧАСЫ

Чтобы следить за течением времени, необходим простой способ его определения. В древности для этого использовались водяные или песочные часы. Точное определение времени стало возможным после того, как Галилей в 1581 установил, что период колебаний маятника почти не зависит от их амплитуды. Однако практическое использование этого принципа в маятниковых часах началось лишь спустя сто лет. Самые совершенные маятниковые часы сейчас имеют точность хода ок. 0,001–0,002 с в сутки. Начиная с 1950-х годов, маятниковые часы перестали использоваться для точных измерений времени и уступили место кварцевым и атомным часам. часы. Кварцевые часы. Кварц обладает т.н. «пьезоэлектрическими» свойствами: при деформации кристалла возникает электрический заряд, и наоборот под действием электрического поля происходит деформация кристалла. Контроль, осуществляемый с помощью кристалла кварца, позволяет получить почти постоянную частоту электромагнитных колебаний в электрическом контуре. Пьезокварцевый генератор обычно создает колебания с частотой 100 000 Гц и выше. Специальное электронное устройство, известное под названием «делитель частоты», позволяет снизить частоту до 1000 Гц. Сигнал, полученный на выходе, усиливается и приводит в действие синхронный электромотор часов. Фактически, работа электромотора синхронизирована с колебаниями пьезокристалла. С помощью системы зубчатых передач мотор может быть соединен со стрелками, показывающими часы, минуты и секунды. По существу, кварцевые часы представляют собой сочетание пьезокварцевого генератора, делителя частоты и синхронного электромотора. Точность хода лучших кварцевых часов достигает нескольких миллионных долей секунды в сутки. Атомные часы. Для отсчета времени могут быть использованы также процессы поглощения (или излучения) электромагнитных волн атомами или молекулами некоторых веществ. Для этого применяется сочетание атомного генератора колебаний, делителя частоты и синхронного мотора. Согласно квантовой теории, атом может находиться в различных состояниях, каждое из которых соответствует определенному энергетическому уровню Е, представляющему дискретную величину. При переходе с более высокого энергетического уровня на более низкий возникает электромагнитное излучение, и наоборот, при переходе на более высокий уровень излучение поглощается. Частота излучения, т.е. число колебаний в секунду, определяется формулой: f = (E2 – E1)/h, где E2 – начальная энергия, E1 – конечная энергия и h – постоянная Планка. Многие квантовые переходы дают очень высокую частоту, примерно 5×1014 Гц, и возникающее излучение находится в диапазоне видимого света. Для создания атомного (квантового) генератора необходимо было найти такой атомный (или молекулярный) переход, частота которого могла бы быть воспроизведена с помощью электронной техники. Микроволновые устройства, подобные используемым в радиолокаторе, способны генерировать частоты порядка 1010 (10 млрд.) Гц. Первые точные атомные часы, в которых использовался цезий, были разработаны Л.Эссеном и Дж.В.Л.Парри в Национальной физической лаборатории в Теддингтоне (Великобритания) в июне 1955. Атом цезия может существовать в двух состояниях, причем в каждом из них он притягивается или одним, или другим полюсом магнита. Атомы, выходящие из нагревательной установки, проходят по трубке, расположенной между полюсами магнита «А». Атомы, находящиеся в состоянии, условно обозначаемом 1, отклоняются магнитом и ударяются о стенки трубки, тогда как атомы, находящиеся в состоянии 2, отклоняются в другую сторону таким образом, что проходят вдоль трубки через электромагнитное поле, частота колебаний которого соответствует радиочастоте, и затем направляются ко второму магниту «В». Если радиочастота подобрана правильно, то атомы, переходя в состояние 1, отклоняются магнитом «В» и улавливаются детектором. В противном случае атомы сохраняют состояние 2 и отклоняются в сторону от детектора. Частота электромагнитного поля изменяется до тех пор, пока счетчик, присоединенный к детектору, не покажет, что генерируется нужная частота. Резонансная частота, генерируемая атомом цезия (133Cs), составляет 9 192 631 770 ± 20 колебаний в секунду (эфемеридного времени). Эта величина называется цезиевым эталоном. Преимущество атомного генератора перед кварцевым пьезоэлектрическим заключается в том, что его частота не меняется со временем. Однако он не может непрерывно функционировать столь же долго, как кварцевые часы. Поэтому принято комбинировать в одних часах пьезоэлектрический кварцевый генератор с атомным; частота кварцевого генератора время от времени проверяется по атомному генератору.

Для создания генератора используется также изменение состояния молекул аммиака Nh4. В устройстве, называемом «мазер» (микроволновом квантовом генераторе), внутри полого резонатора генерируются колебания в радиодиапазоне с почти постоянной частотой. Молекулы аммиака могут находиться в одном из двух энергетических состояний, различно реагирующих на электрический заряд определенного знака. Пучок молекул проходит в поле электрически заряженной пластины; при этом те из них, которые находятся на более высоком энергетическом уровне, под воздействием поля направляются в небольшое входное отверстие, ведущее в полый резонатор, а молекулы, находящиеся на более низком уровне, отклоняются в сторону. Часть молекул, попавших в резонатор, переходит на более низкий энергетический уровень, испуская при этом излучение, на частоту которого оказывает воздействие конструкция резонатора. По результатам экспериментов в Невшательской обсерватории в Швейцарии, полученная частота составила 22 789 421 730 Гц (в качестве эталона при этом использовалась резонансная частота цезия). Проводившееся в международных масштабах с помощью радио сопоставление частот колебаний, измеренных для пучка атомов цезия показало, что величина расхождений частот, получаемых в установках различной конструкции, составляет примерно две миллиардных. Квантовый генератор, в котором используется цезий или рубидий, известен под названием газонаполненного фотоэлемента. В качестве квантового генератора частот (мазера) применяется также водород. Изобретение (квантовых) атомных часов в значительной степени способствовало исследованиям изменений скорости вращения Земли и разработке общей теории относительности.

Секунда. Использование атомной секунды в качестве эталонной единицы времени было принято 12-й Международной конференцией по мерам и весам в Париже в 1964. Она определяется на основе цезиевого эталона. С помощью электронных устройств осуществляется подсчет колебаний цезиевого генератора, и время, за которое происходит 9 192 631 770 колебаний, принимается за эталон секунды. Гравитационное (или эфемеридное) время и атомное время. Эфемеридное время устанавливается по данным астрономических наблюдений и подчиняется законам гравитационного взаимодействия небесных тел. Определение времени с помощью квантовых стандартов частоты основано на электрических и ядерных взаимодействиях внутри атома. Вполне возможно несовпадение масштабов атомного и гравитационного времени. В таком случае частота колебаний, генерируемых атомом цезия, будет изменяться по отношению к секунде эфемеридного времени в течение года, и это изменение нельзя отнести за счет ошибки наблюдения. Радиоактивный распад. Хорошо известно, что атомы некоторых, т.н. радиоактивных, элементов самопроизвольно распадаются. В качестве показателя скорости распада используется «период полураспада» – промежуток времени, за который число радиоактивных атомов данного вещества уменьшается вдвое. Радиоактивный распад также может служить мерой времени – для этого достаточно подсчитать, какая часть от общего числа атомов подверглась распаду. По содержанию радиоактивных изотопов урана оценивается возраст горных пород в пределах нескольких миллиардов лет. Большое значение имеет радиоактивный изотоп углерода 14С, образующийся под воздействием космического излучения. По содержанию этого изотопа, имеющего период полураспада 5568 лет, можно датировать образцы возрастом несколько более 10 тыс. лет. В частности, его используют для определения возраста объектов, связанных с деятельностью человека, как в историческое, так и в доисторическое время. Вращение Земли. Как предполагали астрономы, период вращения Земли вокруг своей оси изменяется во времени. Поэтому оказалось, что течение времени, отсчет которого ведется на основе вращения Земли, иногда бывает ускоренным, а иногда – замедленным по сравнению с тем, которое определяется по орбитальному движению Земли, Луны и других планет. За последние 200 лет ошибка в отсчете времени на основе суточного вращения Земли по сравнению с «идеальными часами» достигала 30 с. За сутки отклонение составляет несколько тысячных долей секунды, однако за год накапливается ошибка в 1–2 с. Различают три типа изменения скорости вращения Земли: вековые, являющиеся следствием приливов под воздействием лунного притяжения и приводящие к увеличению продолжительности суток примерно на 0,001 с в столетие; малые скачкообразные изменения продолжительности суток, причины которых точно не установлены, удлиняющие или укорачивающие сутки на несколько тысячных долей секунды, причем такая аномальная продолжительность может сохраняться на протяжении 5–10 лет; наконец, отмечаются периодические изменения, главным образом с периодом в один год.

ЛИТЕРАТУРА

Бакунин П.И., Блинов Н.С. Служба точного времени. М., 1977 Физика космоса. М., 1986 Завельский Ф.С. Время и его измерение от биллионных долей секунды до миллиардов лет. М., 1987

dic.academic.ru

Время, законы времени, суть времени

Как могу я в настоящее время надеяться найти моё прошлое?... Уже почти ровно двенадцать, и через почти ровно два часа сто тридцать восемь лет назад я должна была присутствовать на моём уроке писания с пратётушкой Эрминтрудой!

Джефф Нун Автоматическая Алиса

В нашей жизни существуют такие вещи, которые присутствуют всегда, но задумываемся мы о них крайне редко в силу того, что даже не можем до конца этот факт понять и осмыслить. Одной из таких категорий является понятие времени. Оно как бы и есть, как бы и нет, его вроде бы измеряют, но пощупать его невозможно. Время словно стоит на границе материальных миров: физического и тонкого. Лишь ученые-физики и философы пытаются познать природу времени и процессов, связанных с ним и оперируют этим понятием в своей деятельности. Нам же толком так и не объяснили что же это такое. Является ли время каким-то непреложным законом или это просто придуманные человеком «точки ориентировки» для систематизации его жизни? Давайте попробуем пристальнее взглянуть на это удивительное и неотъемлемое явление нашей жизни…

Существует мнение, что из всех живых существ на земле лишь человеку свойственно чувство времени, а животное живёт настоящим моментом и если помнит о каком-либо событии прошлого, то ему кажется, что оно случилось только что. Также оно не осознаёт, сколько времени должно пройти до тех пор, когда наступит какой-то момент в будущем.

Время на санскрите называется «кала». Каландара — дающий время. Время — «колесо», которое неумолимо «катится» вперёд, имея две составляющие — движение вперёд и вращение по кругу (через какое-то время всё в жизни повторяется, но только в новой обстановке). Веды утверждают, что существует и другой тип времени – вечное духовное. Его деятельность проявлена в духовном мире. Оно никогда не исчезает и не прекращает своего действия. Духовное время, воздействуя на всё сущее, заставляет его двигаться не циклически, а строго в одном направлении. Существа духовных миров постоянно прогрессируют в своём развитии и никогда не умирают.

В сознании древних существовало представление об «ухудшении» времени. Лежащая на нём печать божественности, обеспечивающая ему совершенство, постепенно стирается, и возникает необходимость нового импульса свыше, нового творения мира и времени.

Во времена античного мира Анаксагор впервые предположил, что мир возник одновременно со временем. Исходное же состояние времени он считал вечностью. Платон теоретически обосновал принцип «порчи времени» и циклическую концепцию мирового бытия. Аристотель говорил, что оно всегда связано с конкретным объектом, ибо невозможно движение без того, что движется.

Христианство же провозгласило линейность времени как принцип. Идея цикличного времени с точки зрения космогонии христианства неприемлема. Она означала бы, что человеку нет смысла надеяться на «истинное счастье», что круговращение человеческих страданий бесконечно.

Представление же об абсолютном, ни от чего не зависящем (Ньютоновском) времени стало одним из элементов социальной психологии людей современности. Математическое доказательство относительности времени Эйнштейна обусловило возникновение учения о четырёхмерном пространстве, четвёртой составляющей которого является неравномерно текущее время.

В одной из своих работ Николай Левашов объясняет, почему в нашей вселенной время протекает линейно. Имеется одно направление, в котором происходит последовательная цепь событий в нашей мета-вселенной — от пространств-вселенных, образованных двумя формами материй, к пространствам-вселенным, образованным синтезом девяти форм материй. В наше пространство-вселенную событие возмущения материй приходит из пространств-вселенных, образованных шестью формами материй. Поэтому, пройдя цикл развития в нашем пространстве-вселенной, образованной из семи форм материй (поэтому 7 цветов, нот и т.п.), первичные возмущения с «наложением» отпечатков происходящих в нём, достигают пространства-вселенной, образованной из восьми форм материй и через него, далее достигают центра зоны искривления мерности нашей мета-вселенной. Это и является причиной того, что время течёт в одном направлении. Воздействие потоков, идущих извне, в первую очередь вызывает изменения на ментальных, потом на астральном и эфирном уровнях. Изменение, возникшее на внешних планах нашей планеты, последовательно проходя через предыдущие уровни, достигает естественно физического уровня и проявляется на нём.

Так можно увидеть будущее.

Глубина проникновения мыслью, сознанием в будущее зависит от того, на какой уровень, «этаж» планеты, человек смог сместиться своим сознанием. При мысленном смещении на четвёртый ментальный уровень планеты можно заглянуть на сотни, тысячи лет вперёд. Минимальное смещение — на эфирный уровень, даёт увидеть будущее ближайших дней, месяцев и лет. Как возможно подняться на седьмой этаж и узнать о событии, которое произойдёт через некоторое время, так же можно и спуститься в «подвальные» этажи и узнать, что было в прошлом. И опять, чем глубже человек своим сознанием может сместиться, тем в более далекое прошлое сможет заглянуть.

Будущее и Прошлое материальны и реальны, они являются частями одного неразрывного процесса. Ядерная физика на уровне элементарных частиц определила, что прошлое предопределяет будущее…

Выше гун материальной природы находится время, и в результате действия этих гун и под контролем времени находится вся деятельность, которая называется карма

Шримад Бхагаватам 2.5.22

В Ведах считается, что материальное время лишь проявление духовного. Этот тип времени начинает свою деятельность в момент возникновения одной из множества материальных вселенных и заканчивает свое действие в момент её разрушения, становясь непроявленным.

Имея духовную природу душа неизменна и вечна, но в силу своих желаний она рождается в новом материальном теле, где и находится ровно столько, сколько обусловлено кармой, выходя из тела в силу неукротимого влияния материального времени. Всё в этом мире движется по орбите вечного Времени, и всё, что существует, имеет также свою собственную орбиту времени. У каждого живого существа в этой Вселенной, как и у каждой планеты, есть своя орбита времени, называемая самватсарой. То по какой оси движется планета и является её орбитой времени. Не только планета, но и сама Вселенная спустя определенный срок будет разрушена. Каждый человек знает день своего рождения и то, что с этого дня он идёт иногда быстрей, иногда медленней навстречу своей смерти. Человек знает, что ему отведён определённый срок жизни. Время двигает атомы, планеты, жизнь людей и всё, что существует в этом мире по их циклу жизни. В этом мире не существует нецикличных и незакономерных процессов.

Время разрушает всё, что идет вразрез с духовным прогрессом. Только реализованное знание о том, что мы — душа, имеем вечную бессмертную природу и отличаемся от бренного материального тела, делает человека абсолютно бесстрашным.

Течение времени воспринимается всеми индивидуально. Когда мы удовлетворены, оно пролетает очень быстро. Когда же мы страдаем (наши планы отличаются от реальности), то оно мучительно долго тянется. Поэтому, например, продолжительность жизни на райских планетах очень велика по нашим земным масштабам, хотя там это не ощущается. А те мгновения, которые по земным масштабам греховное живое существо проводит в аду, воспринимаются им как тысячелетия.

Надо жить не по часам, а плыть на лодке Времени по океану жизни

Во Времени развертывается судьба каждого из нас, и только в строго определённые моменты времени возможны успехи и поражения. Время — это не что-то однородное и поверхностное. Время — это тончайшая нить, из которой плетётся ткань судьбы, и именно непостижимая природа Времени является основой всего, что случается с нами. Тот, кто будет дружить со Временем, сумеет стать неуязвимым во всём.

Согласно Ведам, Время — одно из самых могущественных сил, которые глубоко действуют на наше сознание. Но в большинстве своём люди не понимают этого и не придают должного значения могущественной силе времени. В итоге они теряют ясность понимания событий, их интуиция притупляется. Те же, кто внимательно относятся к законам времени, могут развить интуицию, видеть вещие сны, предчувствовать приближающиеся события и предсказывать их исход.

Существует выражение – «убить время». Убийство времени, т.е. бессмысленное его заполнение, ведёт к очень тяжёлой карме и является серьёзным грехом. Время — это единственный ресурс, который никогда не восстанавливается. Всё можно вернуть, но только не потерянное время. Один момент времени качественно не похож на другой. То, что возможно сегодня, может стать невозможным завтра. Человек, думающий, что может отложить какие-то важные дела на потом, считает, что через неделю будет точно такой же день, как и сегодня. Но он глубоко заблуждается: через неделю качество времени изменится, будет день для совершенно других дел, и то, что должно было быть сделано сегодня, совсем не впишется в ткань времени завтра, послезавтра или какого-то другого момента. Для всего есть свой отведённый срок, у всего есть СВОЁ ВРЕМЯ. И сначала нужно учиться чувствовать это, а затем начинать управлять этим. Никогда нельзя медлить, но и спешить, тоже не стоит.

Мы можем по необходимости или по своему желанию отказаться выполнять «волю» времени. Подчиняющий аспект времени не всегда проявляется явно, поэтому создаётся впечатление, что всё в этом мире дозволено. Однако, существует множество критериев, указывающих на неизбежность страданий при игнорировании силы времени. К примеру, несоблюдение режима сна однозначно приводит ко многим болезням и истощению психики. Наше питание, труд и отдых должны выполняться в определенные благоприятные периоды. Учась вставать, ложиться и принимать пищу вовремя, вы закладываете основу для благостного состояния ума. Нарушение же законов времени приводит к ослаблению разума, что в итоге провоцирует снижение вашей силы воли, а соответственно и к эффективности в жизни.

Согласно силе времени следует в первую половину дня работать умом, вторую половину дня работать телом, в сумерки работать духом (рано утром и перед сном), а ночью работать сокровенной душой и отдыхать, выходя за пределы известного. Тот, кто не может использовать правильно время, всегда остается в проигрыше. Поэтому в «Бхагавад-Гите» говорится — тот, кто не знает режима сна, еды, отдыха и работы не может стать совершенным йогом.

Человек должен вставать до рассвета. Примерно за 48 минут до восхода Солнца все функции в организме меняются на противоположные (доминирование одного полушария мозга сменяется другим, начинает лучше дышать другая ноздря, энергопотоки интенсивнее движутся с другой стороны, логика сменяется интуицией). Человек, встающий с 4-00 до 5-00, обладает большей жизнерадостностью, легко преодолевает трудности в жизни, имеет потенциал лидера и способен добиться больших материальных успехов. Тот, кто встает с 5-00 до 6-00, тоже будет добиваться определенных успехов, но не таких выдающихся. Серьёзных проблем в жизни тоже не будет. Веды говорят, чтобы исправить свою судьбу и отрицательную карму нужно вставать только до 6-00. Иначе это невозможно.

Режим приёма пищи является не менее важным, чем её качество. Даже самые полезные продукты, съеденные не вовремя, могут нанести вред и организму, и психике человека.

Во время сна происходит наполнение организма психической энергией (оджас). Это наполнение происходит с 21-00 до 4-00 под воздействием силы луны. Поэтому работа в ночное время считается крайне неблагоприятным видом занятия.

Выработав у себя привычки, сонастроенные со вселенским режимом времени, человек начинает ощущать внутреннюю силу, спокойствие ума и испытывает состояние счастья и удовлетворенности.

Помимо режима дня существуют благоприятные временные циклы для какой-либо деятельности, связанные не только с расположением солнца на небосклоне, но и с положением всех других планет нашей солнечной системы. Например, положение луны может влиять на здоровье человека, когда он делает стрижку или проводит какое-то лечение. Также для каждой лечебной травы существует своё лунное время, определяющее максимальную лечебную силу растения в момент её сбора. Всеми этими тонкостями занимается астрология. В ведические времена ни одно важное дело не начиналось без консультации астролога. Благоприятные результаты приносит действие, начатое в подходящий момент времени. (Важно понимать, что абсолютное большинство современных астрологов совершенно не компетентны в астрологии по сути, так как они не учитывают при составлении карт и прочих вычислений многие факторы, самый важный из них — причинно-следственные связи всего происходящего. Поэтому будьте бдительны при обращении к подобным «специалистам» прим.ред.)

Подводя итоги, хочется надеяться на то, что для каждого прочитавшего эту статью, вышеизложенное станет СВОЕВРЕМЕННЫМ материалом для размышлений и выводов, сопутствующих движению вперёд!

Медитируйте на то, что ваша собранность, сосредоточенность и своевременность напрямую влияют на исход событий. Это направит вашу волю к благоприятным изменениям. Начните задумываться, что в ваших делах идёт не так, что вы делаете не вовремя, возможно, берёте на себя лишнее, или наоборот – не делаете того, что необходимо. Анализируйте свои дела, весь свой режим дня, отдыха и труда с точки зрения гармоничного использования времени, и изменяйте то, что сочтёте неправильным, уводящим вас от истинных и благостных целей.

Помните, что у каждого живого существа есть своя степень возможности подчиняться времени. Она определяется его кармой, т.е. влиянием на его жизнь поступков, совершенных в прошлом. Меняя себя, не будьте строги к окружающим. Просто станьте примером для них.

Очень немногим удается видеть время объёмно, одновременно в разных временных точках. Все страдания человека заключаются либо в переживаниях прошлого, либо в ожиданиях будущего, мы тратим на это множество своей энергии, при этом автоматически и неосознанно существуя в настоящем. Очень важно не только понимать, когда благоприятнее выполнить ту или иную деятельность, но и быть максимально сосредоточенным на моменте «здесь и сейчас», осознавать то, что происходит. Тогда появится чувство наполненности и удовлетворенности, инстинктивное понимание своевременности тех или иных поступков, а также увеличится скорость вашего развития.

Успехов на пути и крепкой дружбы со временем! ОМ!

(От редакторской группы добавим, что одно из самых эффективных вложений времени – это использование его на благо окружающего мира. А каким образом – решать каждому по своему)

Литература и www-источники:

www.oum.ru

ВРЕМЯ - это... Что такое ВРЕМЯ?

ВРЕ́МЯ, -мени, мн. -мена, -мён, -менам, ср.

1. Одна из форм (наряду с пространством) существования бесконечно развивающейся материи последовательная смена её явлений и состояний. Вне времени и пространства нет движения материи.

2. Продолжительность, длительность чего-н., измеряемая секундами, минутами, часами. Сколько времени (который час?).

3. Промежуток той или иной длительности, в к-рый совершается что-н., последовательная смена часов, дней, лет. Отрезок времени. Хорошо провести в. В. не ждёт (надо торопиться). В. терпит (еще можно ждать). В. покажет (будет видно в будущем). В. работает на нас. Продолжительное в. На короткое в. Выиграть в.

4. Определённый момент, в который происходит что-н. Назначить в. заседания. В. обеда. В любое в. дня.

5. (мн. в одном знач. с ед.). Период, эпоха. Во время (времена) Петра I. Суровое время (суровые времена). С незапамятного времени (с незапамятных времён). Во все времена (всегда). На все времена (навсегда). 6. Пора дня, года. Вечернее в. В. детское (взрослым ещё рано ложиться спать; разг.). Дождливое в. Времена года (зима, весна, лето, осень). 7. в знач. сказ., с неопред. Подходящий, удобный срок, благоприятный момент. Не в. сидеть сложа руки. Самое в. обедать.

8. Период или момент, не занятый чем-н., свободный от чего-н. Свободное в. Есть в. поговорить. Нет времени для прогулок.

9. В грамматике: категория глагола, специальными формами относящая действие в план настоящего, прошлого или будущего. Настоящее, прошедшее, будущее в. Причастие настоящего, прошедшего времени.

10. времён кого (чего), в знач. предлога с род. В период, во время существования кого-чего-н. (о ком-чём-н. бывшем в отдалённом прошлом). Писатели времён классицизма. Оружие времён гражданской войны. • Во время чего, предл. с род. в то время, когда что-н. происходит. Шум во время лекции.

(В) первое время в начальный период чего-н., вначале. В первое время на работе уставал.

(В) последнее время незадолго до настоящего момента и сейчас. В последнее время получаю много писем.

Время от времени иногда.

Всё время не переставая, постоянно.

Всему своё время всё должно делаться вовремя, своевременно.

В своё время 1) когда-то, в прошлом. В своё время хорошо играл в футбол; 2) когда нужно, своевременно. В своё время всё узнаешь.

В скором времени скоро, в ближайшем будущем.

В то время как (когда), союз 1) присоединяет предложение со знач. одновременности. В то время как она отдыхала, он приготовил обед; 2) то же, что тогда как (в 1 знач.). Бездельничает, в то время как завтра экзамен. (И, а, но) в то же время, союз (и, а, но) одновременно, наряду с этим. Осторожен, (и, а, но) в то же время расчётлив.

До времени или до поры до времени пока, до какого-н. момента.

До сего времени до сих пор, до этого времени, момента.

Ко времени (разг.) к сроку, вовремя. Этот разговор не ко времени (несвоевременен).

На время на какой-н. срок, ненадолго.

На первое время на ближайшее будущее.

Одно время в течение нек-рого времени в прошлом. Одно время не ладилось с учёбой.

По временам то же, что иногда. По временам скучает.

Раньше времени то же, что преждевременно.

Со временем по прошествии нек-рого времени. Со временем остепенится.

Тем временем одновременно с этим, именно в это же время.

| уменьш. времечко, -а, ср. (к 3, 4, 6, 7 и 8 знач.). | прил. временной, -ая, -ое (к 1, 2 и 9 знач.).

Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.

dic.academic.ru


Смотрите также




MnogoStatusov.RU


Поделиться с Друзьями



Если тебе понравились статусы жми кнопки




Нравится







Популярные статусы

Популярные статусы

{topusers1}
«    Май 2018    »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031